55 research outputs found

    Predicting the Tolerated Sequences for Proteins and Protein Interfaces Using RosettaBackrub Flexible Backbone Design

    Get PDF
    Predicting the set of sequences that are tolerated by a protein or protein interface, while maintaining a desired function, is useful for characterizing protein interaction specificity and for computationally designing sequence libraries to engineer proteins with new functions. Here we provide a general method, a detailed set of protocols, and several benchmarks and analyses for estimating tolerated sequences using flexible backbone protein design implemented in the Rosetta molecular modeling software suite. The input to the method is at least one experimentally determined three-dimensional protein structure or high-quality model. The starting structure(s) are expanded or refined into a conformational ensemble using Monte Carlo simulations consisting of backrub backbone and side chain moves in Rosetta. The method then uses a combination of simulated annealing and genetic algorithm optimization methods to enrich for low-energy sequences for the individual members of the ensemble. To emphasize certain functional requirements (e.g. forming a binding interface), interactions between and within parts of the structure (e.g. domains) can be reweighted in the scoring function. Results from each backbone structure are merged together to create a single estimate for the tolerated sequence space. We provide an extensive description of the protocol and its parameters, all source code, example analysis scripts and three tests applying this method to finding sequences predicted to stabilize proteins or protein interfaces. The generality of this method makes many other applications possible, for example stabilizing interactions with small molecules, DNA, or RNA. Through the use of within-domain reweighting and/or multistate design, it may also be possible to use this method to find sequences that stabilize particular protein conformations or binding interactions over others

    The Odyssey of Dental Anxiety: From Prehistory to the Present. A Narrative Review

    Get PDF
    Dental anxiety (DA) can be considered as a universal phenomenon with a high prevalence worldwide; DA and pain are also the main causes for medical emergencies in the dental office, so their prevention is an essential part of patient safety and overall quality of care. Being DA and its consequences closely related to the fight-or-flight reaction, it seems reasonable to argue that the odyssey of DA began way back in the distant past, and has since probably evolved in parallel with the development of fight-or-flight reactions, implicit memory and knowledge, and ultimately consciousness. Basic emotions are related to survival functions in an inseparable psychosomatic unity that enable an immediate response to critical situations rather than generating knowledge, which is why many anxious patients are unaware of the cause of their anxiety. Archeological findings suggest that humans have been surprisingly skillful and knowledgeable since prehistory. Neanderthals used medicinal plants; and relics of dental tools bear witness to a kind of Neolithic proto-dentistry. In the two millennia BC, Egyptian and Greek physicians used both plants (such as papaver somniferum) and incubation (a forerunner of modern hypnosis, e.g., in the sleep temples dedicated to Asclepius) in the attempt to provide some form of therapy and painless surgery, whereas modern scientific medicine strongly understated the role of subjectivity and mind-body approaches until recently. DA has a wide range of causes and its management is far from being a matter of identifying the ideal sedative drug. A patient's proper management must include assessing his/her dental anxiety, ensuring good communications, and providing information (iatrosedation), effective local anesthesia, hypnosis, and/or a wise use of sedative drugs where necessary. Any weak link in this chain can cause avoidable suffering, mistrust, and emergencies, as well as having lifelong psychological consequences. Iatrosedation and hypnosis are no less relevant than drugs and should be considered as primary tools for the management of DA. Unlike pharmacological sedation, they allow to help patients cope with the dental procedure and also overcome their anxiety: achieving the latter may enable them to face future dental care autonomously, whereas pharmacological sedation can only afford a transient respite

    Systematic development of a communication skills training course for physicians performing work disability assessments: from evidence to practice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Physicians require specific communication skills, because the face-to-face contact with their patients is an important source of information. Although physicians who perform work disability assessments attend some communication-related training courses during their professional education, no specialised and evidence-based communication skills training course is available for them. Therefore, the objectives of this study were: 1) to systematically develop a training course aimed at improving the communication skills of physicians during work disability assessment interviews with disability claimants, and 2) to plan an evaluation of the training course.</p> <p>Methods</p> <p>A physician-tailored communication skills training course was developed, according to the six steps of the Intervention Mapping protocol. Data were collected from questionnaire studies among physicians and claimants, a focus group study among physicians, a systematic review of the literature, and meetings with various experts. Determinants and performance objectives were formulated. A concept version of the training course was discussed with several experts before the final training course programme was established. The evaluation plan was developed by consulting experts, social insurance physicians, researchers, and policy-makers, and discussing with them the options for evaluation.</p> <p>Results</p> <p>A two-day post-graduate communication skills training course was developed, aimed at improving professional communication during work disability assessment interviews. Special focus was on active teaching strategies, such as practising the skills in role-play. An adoption and implementation plan was formulated, in which the infrastructure of the educational department of the institute that employs the physicians was utilised. Improvement in the skills and knowledge of the physicians who will participate in the training course will be evaluated in a randomised controlled trial.</p> <p>Conclusions</p> <p>The feasibility and practical relevance of the communication skills training course that was developed seem promising. Such a course may be relevant for physicians in many countries who perform work disability assessments. The development of the first training course of this type represents an important advancement in this field.</p

    Tradeoff Between Stability and Multispecificity in the Design of Promiscuous Proteins

    Get PDF
    Natural proteins often partake in several highly specific protein-protein interactions. They are thus subject to multiple opposing forces during evolutionary selection. To be functional, such multispecific proteins need to be stable in complex with each interaction partner, and, at the same time, to maintain affinity toward all partners. How is this multispecificity acquired through natural evolution? To answer this compelling question, we study a prototypical multispecific protein, calmodulin (CaM), which has evolved to interact with hundreds of target proteins. Starting from high-resolution structures of sixteen CaM-target complexes, we employ state-of-the-art computational methods to predict a hundred CaM sequences best suited for interaction with each individual CaM target. Then, we design CaM sequences most compatible with each possible combination of two, three, and all sixteen targets simultaneously, producing almost 70,000 low energy CaM sequences. By comparing these sequences and their energies, we gain insight into how nature has managed to find the compromise between the need for favorable interaction energies and the need for multispecificity. We observe that designing for more partners simultaneously yields CaM sequences that better match natural sequence profiles, thus emphasizing the importance of such strategies in nature. Furthermore, we show that the CaM binding interface can be nicely partitioned into positions that are critical for the affinity of all CaM-target complexes and those that are molded to provide interaction specificity. We reveal several basic categories of sequence-level tradeoffs that enable the compromise necessary for the promiscuity of this protein. We also thoroughly quantify the tradeoff between interaction energetics and multispecificity and find that facilitating seemingly competing interactions requires only a small deviation from optimal energies. We conclude that multispecific proteins have been subjected to a rigorous optimization process that has fine-tuned their sequences for interactions with a precise set of targets, thus conferring their multiple cellular functions

    Structure Collisions between Interacting Proteins

    Get PDF
    Protein-protein interactions take place at defined binding interfaces. One protein may bind two or more proteins at different interfaces at the same time. So far it has been commonly accepted that non-overlapping interfaces allow a given protein to bind other proteins simultaneously while no collisions occur between the binding protein structures. To test this assumption, we performed a comprehensive analysis of structural protein interactions to detect potential collisions. Our results did not indicate cases of biologically relevant collisions in the Protein Data Bank of protein structures. However, we discovered a number of collisions that originate from alternative protein conformations or quaternary structures due to different experimental conditions

    Fungal ecology: principles and mechanisms of colonization and competition by saprotrophic fungi

    Get PDF
    Decomposer fungi continually deplete the organic resources they inhabit, so successful colonization of new resources is a crucial part of their ecology. Colonization success can be split into (i) the ability to arrive at, gain entry into, and establish within a resource and (ii) the ability to persist within the resource until reproduction and dissemination. Fungi vary in their life history strategies, the three main drivers of which are stress (S-selected), disturbance (ruderal, or R-selected), and incidence of competitors (C-selected); however, fungi often have combinations of characteristics from different strategies. Arrival at a new resource may occur as spores or mycelium, with successful entry and establishment (primary resource capture) within the resource largely dependent on the enzymatic ability of the fungus. The communities that develop in a newly available resource depend on environmental conditions and, in particular, the levels of abiotic stress present (e.g., high temperature, low water availability). Community change occurs when these initial colonizers are replaced by species that are either more combative (secondary resource capture) or better able to tolerate conditions within the resource, either through changing abiotic conditions or due to modification of the resource by the initial colonizers. Competition for territory may involve highly specialized species-specific interactions such as mycoparasitism or may be more general; in both cases combat involves changes in morphology, metabolism, and reactive oxygen species production, and outcomes of these interactions can be altered under different environmental conditions. In summary, community development is not a simple ordered sequence, but a complex ever-changing mosaic

    Identification of a Novel Class of Farnesylation Targets by Structure-Based Modeling of Binding Specificity

    Get PDF
    Farnesylation is an important post-translational modification catalyzed by farnesyltransferase (FTase). Until recently it was believed that a C-terminal CaaX motif is required for farnesylation, but recent experiments have revealed larger substrate diversity. In this study, we propose a general structural modeling scheme to account for peptide binding specificity and recapitulate the experimentally derived selectivity profile of FTase in vitro. In addition to highly accurate recovery of known FTase targets, we also identify a range of novel potential targets in the human genome, including a new substrate class with an acidic C-terminal residue (CxxD/E). In vitro experiments verified farnesylation of 26/29 tested peptides, including both novel human targets, as well as peptides predicted to tightly bind FTase. This study extends the putative range of biological farnesylation substrates. Moreover, it suggests that the ability of a peptide to bind FTase is a main determinant for the farnesylation reaction. Finally, simple adaptation of our approach can contribute to more accurate and complete elucidation of peptide-mediated interactions and modifications in the cell

    A Generic Program for Multistate Protein Design

    Get PDF
    Some protein design tasks cannot be modeled by the traditional single state design strategy of finding a sequence that is optimal for a single fixed backbone. Such cases require multistate design, where a single sequence is threaded onto multiple backbones (states) and evaluated for its strengths and weaknesses on each backbone. For example, to design a protein that can switch between two specific conformations, it is necessary to to find a sequence that is compatible with both backbone conformations. We present in this paper a generic implementation of multistate design that is suited for a wide range of protein design tasks and demonstrate in silico its capabilities at two design tasks: one of redesigning an obligate homodimer into an obligate heterodimer such that the new monomers would not homodimerize, and one of redesigning a promiscuous interface to bind to only a single partner and to no longer bind the rest of its partners. Both tasks contained negative design in that multistate design was asked to find sequences that would produce high energies for several of the states being modeled. Success at negative design was assessed by computationally redocking the undesired protein-pair interactions; we found that multistate design's accuracy improved as the diversity of conformations for the undesired protein-pair interactions increased. The paper concludes with a discussion of the pitfalls of negative design, which has proven considerably more challenging than positive design

    Novel Peptide-Mediated Interactions Derived from High-Resolution 3-Dimensional Structures

    Get PDF
    Many biological responses to intra- and extracellular stimuli are regulated through complex networks of transient protein interactions where a globular domain in one protein recognizes a linear peptide from another, creating a relatively small contact interface. These peptide stretches are often found in unstructured regions of proteins, and contain a consensus motif complementary to the interaction surface displayed by their binding partners. While most current methods for the de novo discovery of such motifs exploit their tendency to occur in disordered regions, our work here focuses on another observation: upon binding to their partner domain, motifs adopt a well-defined structure. Indeed, through the analysis of all peptide-mediated interactions of known high-resolution three-dimensional (3D) structure, we found that the structure of the peptide may be as characteristic as the consensus motif, and help identify target peptides even though they do not match the established patterns. Our analyses of the structural features of known motifs reveal that they tend to have a particular stretched and elongated structure, unlike most other peptides of the same length. Accordingly, we have implemented a strategy based on a Support Vector Machine that uses this features, along with other structure-encoded information about binding interfaces, to search the set of protein interactions of known 3D structure and to identify unnoticed peptide-mediated interactions among them. We have also derived consensus patterns for these interactions, whenever enough information was available, and compared our results with established linear motif patterns and their binding domains. Finally, to cross-validate our identification strategy, we scanned interactome networks from four model organisms with our newly derived patterns to see if any of them occurred more often than expected. Indeed, we found significant over-representations for 64 domain-motif interactions, 46 of which had not been described before, involving over 6,000 interactions in total for which we could suggest the molecular details determining the binding
    • …
    corecore